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A logikai kockázatelmélet alkalmazási területén található kockázati 
rendszerek állapotát  úgynevezett hibafával  lehet leírni, 
viselkedésüket pedig az úgynevezett hibafa-analízissel lehet 
elemezni1.  

 

A logikai kockázatelmélet alkalmazási területén található kockázati 
rendszerek állapotát  úgynevezett hibafával  lehet leírni, viselkedésüket 
pedig az úgynevezett hibafa-analízissel lehet elemezni2.  A hibafa-módszer 
ma már csaknem félévszázados múltra tekint vissza, ezért jelen 
kontextusban ismertnek tekintjük. Elméletünk szűkebb, matematikai 
értelmében a hibafa használata ugyanaz, mint egy Boole függvény 
használata, amely a rendszert érő valamely nemkívánatos eseményt 
(pontosabban annak bekövetkezésére vonatkozó kijelentést, állítást) logikai 
műveletekkel visszavezeti bizonyos egyszerűbb, hatáskörünkben lévő 
úgynevezett primitív eseményekre. Az, hogy egy kockázati rendszerre 
vonatkozóan mi minősül nemkívánatosnak teljesen szubjektív megítélés 
kérdése és az elmélet szempontjából érdektelen. 

Introduction 

Risk Systems 
Intuitively by a „risk system” we mean anything that can be described by fault tree 
methodology3 where all probability related notions are omitted (i.e.e. using only the 
Boolean part). 
Formally, by (a model or, rather a description of) a „risk system” we mean an n-element 
set of Boolean equations of the following form:  
 

1 mii i iE C(E ,...,E )=  

Here:  

                                                 
1 Henley 
2 Henley 
3We suppose the reader is familiar with the basics of fault tree methodology. See e.g. [Henley-Kumamoto], p. 310, 
Table 7.7 and [Harrison] 



Letter E means an element – called „event” – of a fixed finite disrributive lattice4 with m 
atoms, i = 1,…, n; mi = 1,…, n with all i1,…, imi > i                                                        (1) 
C is either a conjunction or a disjunction of mi variables. 
Ei is said to have the logic type „A” („AND”) or „V (OR, „Vel”)” if it is a conjunction or 
disjunction respectively. 
The system of this equations is usually called structural equations. 
Events occuring on the right hand sides are called explicants of the event of the left 
hand side. 
Events occuring only on the right hand sides are called primitive events (primevents, 
prime explicants or just primes for short) and denoted by p.  
Events that are not primes are sometimes called complex (events). 
The state indicator of an event can be 0, x , 1 called respectively passive, free and 
active. 

A FORMAL FRAMEWORK 
Formally, a Risk System is a pair < P, E, ∧, ∨ >, where 
P is a finite set P = {p1,..., pn}, n > 0, integer, 
E is a finite set E = {E1,..., Em}, m > 0, ≤ n  integer, 
∧, ∨ (alternatively sometimes denoted by +, x respectively) are algebraic operations5 
defined on P U E satisfying that for arbitrary elements p, q, r of P U E, the following 
axioms for the distributive lattices hold:  
p ∧ (q ∧ r) = (p ∧ q) ∧ r and p ∨ (q ∨ r) = (p ∨ q) ∨ r     (associatiive laws) 
p ∧ q = q ∧ p and p ∨ q = q ∨ p         (commutative laws) 
p ∧ (q ∨ p) = p and p ∨ (q ∧ p) = p        (absorption laws) 
p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)   (distributive laws) 
 
It can be proved (see any textbook on lattices) that:   
for arbitrary elements p, q, r of P U E, 
p ∧ p = p and p ∨ p = q         (idempotency) 
p ∧ q = p if and only if p ∨ q = q 
 
The elements Ej of E (j = 1 … m, m ≤ n) are Boolean “clauses” meaning either pure 
conjunction or disjunction. Their members are called the explicants of Ej being the 
explicandum of the explicants. The prime events are alternatively called “prime 
explicants” 
Event E1 is called the “main explicandum” or “Main Event”. The latter is not to be 
confused with the traditional fault tree term “Top Event”. This will be defined separately 
later in the paper. 
 
Now we define:  

p ≤ q if and only if p ∧ q = p 

                                                 
4 Loosely speaking a Boolean algebra without negation 
5 In lattice theory their frequently used names are “infimum – supremum” “meet-unio”, while in logic “conjunction - 
disjunction” 



 
For now on, a Risk System (RS) will be described (modeled) by a ternary indirect 
monotonic function FT (p1... pn), n integer, fixed, where each pi (i = 1…n) is a ternary 
variable with values 0, u,1. This FT (“Fault tree”) function results if all Ej are eliminated 
using the Boolean expressions defining the Ej -s.  
Variables pi are interpreted respectively as  
pi = 0 whenever the prime event (belonging to pi) does not occur (i.e. is not the case),  
pi = 1 whenever the prime event (belonging to pi) does occur (i.e. is the case). 
pi = u whenever the prime event (belonging to pi) is “undefended”. This – as the “third 
logical value” – is interpreted within traditional ternary logic as “uncertain” or 
“undetermined” or “unknown” or “free”. We prefer the latter6. Thus if pi = u then pi is said 
to be in a free state or just a free prime (event) for short. 
As usual in Boolean logic (or algebra) we define an ordering relation on the set of the 
possible values of the events postulating 0 < u < 1. By this, we define conjunction and 
disjunction as  

p ∧ q = min (p, q) and  p ∨ q = max (p, q) 
respectively for arbitrary ternary variables p, q. 
 
Now let any series p1... pn be denoted by p called a “state vector”. 
If all p1... pn is primary we speak of “primary state”. If all the “E-numbers (value) are 
given we speak of “system state If for a p, FT (p) = 1 then we say that the risk system, 
described by the ternary indirect function FT is active in the state p. 
If for a p, FT (p) = 0 then we say that the risk system, described by the ternary indirect 
function FT is passive in the state p. 
If for a p, FT (p) = u then we say that the risk system, described by the ternary indirect 
function FT is undetermined or free in the state p. 
 
For any state vectors p, q we define 

 
p ≤ q if and only if for all i = 1,…,n pi ≤ qi, 

 
p ≥ q if and only if q ≤ p 

and 
p < q if and only if p ≤ q and p ≠ q

 
It follows form the above:  

p ≤ q and q ≤ r implies p ≤ r 
p ≤ q and q ≤ p implies p = q 

p ≤ q and p = q implies p = q or p < q 
 
 
The primary state of an RS can conveniently be represented by the “state page7” 
 

                                                 
6 It is due to some resemblance to the Shannon’s Switching Game. See e.g.: [Nievergelt ea.] 
7 Introduced by Profes (www.profes.hu ) 

http://www.profes.hu/


Motivations 
Although fault tree methodology is the most favourable in risk assesment there are some 
situations where its usage is problematic or obsolete. 
First, there are nonprobabilistic cases where the very notion of probabity is meaningless. 
(Events, such as terrorist attacs, climatic extremities, unique disasters etc.) 
Second, the systematic application of the notion if state is missing in fault tree context so 
the question of „what is the risk of a system in a given state s ” makes no sense. 
Third, Cutsets and Path sets are clumsy to handle if the number of primes (basic events) 
is above a hundred. In nonprobabilistic cases smal probability approximation are not 
applicable, thus one cannot negligate cutsets with small probability. 
Fourth, the consequent introduction of the notion of level leads to paradoxical results 
such as that the topevent is not always on the top level. Thus one is deprived from the 
possibility to defend a risk system using level defence see later in the paper. 
We attempt to outline an approach to tackle these problems. 

The Concept of Level 
Let we are given an arbitrary Risk System RS according to the definition given in the 
introduction and let it be fixed henceforward. Let n, m denote its number of events, and 
prime events respectively.  
Definition:  
The 0-level of RS, denoted by Level(RS) = 0, is the set of all the primevents of RS 
The 1-level of RS, denoted by Level(RS) = 1, is the set of all the events with explicants 
on the 0 level. 
The L-level of RS (L = 1,...), denoted by Level(RS) = L, is the set of all the events with 
explicants on the L - 1 level but not below. 
The maximal level of a RS is denoted by Lmax. 
The level of an event e is generally denoted by Level(e). 
Definition:  
An event of level L is transient if it has at least an explicant of level L. 
Remark:  
It may happen that an event of level L has an explicant of level L + 1 and that event E1 
(usually called “top event”) is at level L < Lmax. 
 
Definition:  
An event of level L < Lmax is hypertransient if it has an explicant of level >  L. 
Definition:  
A RS is Dominant if the level its top event = Lmax, otherwise it is Recessive 
Defending Level L means that (the disjunction of) all the events on Level L must be 
passive (in the sense of Boolean algebra). 
From now on we speak of level defense only in the case of Level = 1 
A minimal set of primes ensuring level 1 defense is called a Defense set (of the RS in 
question) 
Remark: 
If a set of primes defenses Level 1 then it autoamtivcall akk the highest levels. 
 



 
 

Example:   
Let the events of level 1 be:  
E1 = E2 x E3, 
E2 = E4 + E5, 
E5 = E6 x E7. 
We show, that  
E1+E2+E5 = (E4+E6)x( E4+E7). 
 
Drop the event symbol `E`, replace all events by its explicants in:  
1+2+5 
This is a disjunctive normal form (DNF) 
In List form:  
(1) 1 
(2) 2 
(3) 5 
Reduce every complex event to primes and use the absorption law:  
In (1) E1 is complex:  E1 = E2 x E3. 
Put (2x3) to (1) and omit parenthesis. 
The DNF in the following new list form follows:  
(1) 2x3 
(2) 2 
(3) 5 
 
Here:   
 2 in (2) absorbs 2x3 in (1) . 
After clearing, the new Minterm-list becomes:  
(1) 2 
(2) 5 
In (1) E2 is complex:  E2 = E4 + E5. 
Put (4+5) to (1) and expand:   
(1) (4+5) = 4+5 
 
The DNF in the following new list form follows:  
(1) 4 
(2) 5 
(3) 5 
 
Here:   
 5 in (3) is repeated in (2) . 
After clearing, the new Minterm-list becomes:  
(1) 4 
(2) 5 



In (1) E5 is complex:  E5 = E6 x E7. 
Put (6x7) to (2) and omit parenthesis. 
The DNF in the following new list form follows:  
(1) 4 
(2) 6x7 
By standard Boolean manipulation we get the following CNF with factors (Defense Sets):  
(1) 4,6 
(2) 4,7 
 

CASE STUDY 

The Defense Sets 
The Top Event of the Risk System:  FLOODING THROUGH DIKE SECTION 
LEGEND:   
Reference:  //www.citg.tudelft.nl/live/binaries/57bf3919-13fb-4577-9b9d-
f541a1b0c022/doc/voortman_thesis.pdf 
Number of Prime Events = 24 
Number of Complex Events = 42 
The `Franklin parameters`: Prevention Cost/Prevention Time are measured by an arbitrary (but 
fixed in advance) unit, say 100% = 100$ where 100% corresponds to the prime event with the 
highest value of the Franklin parameter. 
(The actual data are randomly chosen for the sake of the example.) 
`DEFENCE SET` contains the minimal set of prime events (indices) necessary to passivate in 
order to prevent all the events on level 1. 
The fully detailed mathematical derivation of the defense sets and further details are avaible from 
the author:  istvan.bukovics@katved.hu
 
 
 Prevent

ion 
Cost 
[%] 
Index = 
100  

Prevent
ion 
Time 
[%] 
Index = 
100 

Number 
of 
events 

DEFENCE SET 

1 808,51% 754,26% 16 5,11,12,15,19-21,24,26,27,34,35,37-40 
2 864,89% 788,30% 16 6,11,12,15,19-21,24,26,27,34,35,37-40 
 

mailto:istvan.bukovics@katved.hu


The Fault Tree 
 
(V):  FLOODING THROUGH DIKE SECTION 
1(&): INTERNAL EROSION 
1.1: piping 
1.2: burst of cover layer 
2(V): BREACHING THROUGH INNER SLOPE 
2.1(&): INNER EROSION 
2.1.1: micro instability of inner revetment 
2.1.2: uplifting of inner revetment 
2.1.3: phreatic line intersects inner slope 
2.2(&): SLOPE COATING DAMAGE  
2.2.1: erosion of uncovered inner slope 
2.2.2(V): COLLAPSE OF INNER REVETMENT 
2.2.2.1: erosion of inner revetment 
2.2.2.2(V): OVERTOPPING 
2.2.2.2.1(V): OVERFLOWING 
2.2.2.2.1.1: settlement 
2.2.2.2.1.2: foreshore erosion 
2.2.2.2.2(V): WAVE OVERTOPPING  
2.2.2.2.2.1: settlement 
2.2.2.2.2.2: foreshore erosion 
2.2.2.3(V): LEAKING 
2.2.2.3.1: phreatic line intersects inner slope 
2.2.2.3.2: uplifting of inner revetment 
2.3(V): INNER EROSION INSTABILITY  
2.3.1: erosion of collapsed inner slope 
2.3.2(V): MACRO INSTABILITY INNER SLOPE 
2.3.2.1: curved slide plane 
2.3.2.2: linear slide plane 
3(V): BREACHING THROUGH OUTHER SLOPE 
3.1(&): OUTER EROSION MACRO INSTABILITY 
3.1.1: erosion of collapsed outer slope 
3.1.2(V): MACRO INSTABILITY OUTER SLOPE 
3.1.2.1: curved slide plane -foreshore erosion 
3.1.2.2: linear slide plane- foreshore erosion 
3.2(&): DAMAGE OF OUTER SLOPE REVETMENT 
3.2.1: erosion of uncovered outer slope 
3.2.2(V): COLLAPSE OF OUTER REVETMENT 
3.2.2.1(V): REVETMENT DAMAGE 
3.2.2.1.1: sliding of revetment 
3.2.2.1.2: collapse of toe structure - foreshore erosion 
3.2.2.2: uplifting of revetment 
3.2.2.3: erosion of revetment 
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